Menu English Ukrainian Russo Início

Biblioteca técnica gratuita para amadores e profissionais Biblioteca técnica gratuita


ENCICLOPÉDIA DE RÁDIO ELETRÔNICA E ENGENHARIA ELÉTRICA
Biblioteca gratuita / Esquemas de dispositivos radioeletrônicos e elétricos

Sonda de capacitor de óxido. Enciclopédia de rádio eletrônica e engenharia elétrica

Biblioteca técnica gratuita

Enciclopédia de eletrônica de rádio e engenharia elétrica / Tecnologia de medição

Comentários do artigo Comentários do artigo

Ao reparar eletrodomésticos modernos, um dos processos defectológicos mais difíceis é determinar a operacionalidade dos capacitores. E eles “envelhecem” muito mais rápido que outros radioelementos. Este artigo é dedicado ao problema de identificação rápida e confiável de um elemento defeituoso durante o reparo.

A confiabilidade dos dispositivos semicondutores em equipamentos modernos aumentou tanto que os capacitores eletrolíticos de óxido ocuparam o primeiro lugar em termos de número de defeitos [1]. Isto é devido à presença de eletrólito neles. A exposição a temperaturas elevadas, a dissipação das perdas de energia no capacitor e a despressurização nas vedações da carcaça levam ao ressecamento do eletrólito. Um capacitor ideal quando operando em um circuito de corrente alternada possui apenas resistência reativa (capacitiva). Um capacitor real, para o caso considerado a seguir, pode ser representado como um capacitor ideal e um resistor conectado em série com ele. Este resistor é chamado de resistência em série equivalente do capacitor (doravante denominada ESR; na literatura inglesa você pode encontrar um termo semelhante com a abreviatura ESR - Equivalent Series Resistance).

No estágio inicial de ocorrência de defeitos nos capacitores de óxido, a ESR do capacitor é superestimada. Por conta disso, a perda de potência aumenta, aquecendo o capacitor por dentro. Esta potência é diretamente proporcional à ESR do capacitor e ao quadrado de sua corrente de recarga. Posteriormente, o processo progride rapidamente, até que o capacitor perca completamente sua capacidade.

O aparecimento de defeitos em produtos que utilizam capacitores de óxido pode ocorrer em diferentes etapas deste processo. Tudo depende das condições de operação do capacitor, incluindo seus modos elétricos e as características do próprio dispositivo. A dificuldade de diagnosticar tais defeitos é que medir a capacidade com instrumentos convencionais na maioria dos casos não dá resultados, uma vez que a capacidade está dentro da normalidade ou apenas ligeiramente subestimada. Particularmente exigentes quanto à qualidade dos capacitores de óxido são as fontes de alimentação com conversores de alta frequência, onde tais capacitores são usados ​​​​como filtros, e em circuitos de comutação de elementos de potência em frequências de até 100 kHz.

A capacidade de medir a ESR tornaria possível tanto a identificação de capacitores com falha (exceto curtos-circuitos e vazamentos) quanto o diagnóstico precoce de defeitos do dispositivo que ainda não apareceram. Para fazer isso, você pode medir sua resistência complexa em uma frequência suficientemente alta, na qual a capacitância é significativamente menor que o ESR permitido. Por exemplo, a uma frequência de 100 kHz, um capacitor com capacidade de 10 μF tem uma resistência de capacitância de cerca de 0,16 Ohm, o que já é um valor bastante pequeno.

Se você aplicar um sinal dessa frequência através de um resistor de ajuste de corrente a um capacitor controlado, a tensão neste último será proporcional à magnitude de sua resistência complexa. A fonte do sinal pode ser qualquer gerador adequado, e o formato do sinal não desempenha um papel especial, e a resistência de saída do gerador pode servir como um resistor. Você pode usar um osciloscópio ou um milivoltímetro CA para medir a tensão no capacitor. Assim, com um nível de sinal de saída do gerador de 0,6 V, uma resistência de resistor de 600 Ohm em um capacitor com ESR igual a 1 Ohm, a tensão medida será de cerca de 1 mV, e com uma resistência de resistor de 50 Ohm - 12 mV.

A prática de diagnosticar defeitos em capacitores de óxido medindo ESR mostrou que, na grande maioria dos casos, em capacitores defeituosos com capacidade de 10 a 100 μF, excede visivelmente 1 Ohm. Este critério não é rigoroso e depende de vários fatores. É geralmente aceito que bons capacitores possuem uma ESR na faixa de 0,3...6 Ohms, dependendo da capacitância e da tensão de operação [2]. A precisão das medições não desempenha um papel especial na determinação de capacitores defeituosos. Um erro de até 1,5...2 vezes pode ser considerado bastante aceitável. Esses dados foram utilizados no desenvolvimento do dispositivo descrito a seguir.

Além disso, a capacidade de medir sem remover os capacitores do dispositivo é muito importante. Para isso, é necessário que o capacitor controlado não seja desviado por elementos com resistência próxima aos valores ESR medidos, o que é feito na maioria dos casos. Dispositivos semicondutores não afetam os resultados da medição, uma vez que a tensão de medição no capacitor é de unidades e dezenas de milivolts. Também é aconselhável limitar a tensão máxima nas pontas de prova do dispositivo a 1...2 V e a corrente através delas a 3...5 mA, para não danificar outros elementos do dispositivo.

Quanto ao design do dispositivo, obviamente ele deve ser autoalimentado e de tamanho pequeno. A conexão de condutores e braçadeiras para conexão aos capacitores em teste não é recomendada. Ao trabalhar com eles, ambas as mãos estão ocupadas, você precisa de espaço para colocar o próprio dispositivo e precisa olhar constantemente dos pontos de medição para o indicador do dispositivo.

Esses requisitos são atendidos por uma pequena sonda com sondas pontiagudas.

Principais características técnicas

  • Gama de resistências controladas. Ohm.....1,5...10
  • Indicação ..... LED discreto de cinco passos
  • Frequência do sinal de medição, kHz.....60...80
  • Tensão de alimentação, V.....3
  • Consumo de corrente durante as medições, mA ..... 10
  • Valores aproximados de resistência (dependendo do número de LEDs acesos de 1 a 5), ​​Ohm.....1,5; 2,7; 4,8; 7; 10
  • Dimensões da caixa (sem sondas), mm.....70x33x15

Além disso, a sonda pode ser utilizada para avaliar a capacitância de capacitores eletrolíticos - na versão original, de 15 a 90 μF.

O diagrama esquemático da sonda é mostrado na fig. 1.

Sonda do Capacitor de Óxido
(clique para ampliar)

O elemento DD1.1 do microcircuito digital contém um gerador de pulso retangular (elementos de ajuste de frequência R2, C2). As saídas dos restantes elementos são combinadas para aumentar a capacidade de carga. Os resistores R3, R4 e a resistência interna dos elementos definem a corrente através do capacitor testado Cx, a partir do qual um sinal com nível proporcional ao ESR do capacitor controlado é fornecido à entrada do pré-amplificador no transistor VT1. O diodo Zener VD1 limita os pulsos de tensão ao conectar as pontas de prova do dispositivo a capacitores não descarregados. Tensões residuais neles não superiores a 25...50 V não são perigosas para o dispositivo.

O chip DA1 contém um indicador de nível LED de cinco estágios; este chip é usado em alguns videocassetes. O microcircuito inclui um amplificador de sinal de entrada, um detector linear, comparadores com estabilizadores de corrente nas saídas. As relações dos níveis do sinal de entrada nas quais o próximo comparador é ligado correspondem a -10; -5; 0; 3; 6dB. Assim, toda a faixa de indicação cobre 16 dB. Para acender todos os LEDs, deve-se fornecer um sinal com nível de cerca de 1 mV na entrada do microcircuito DA8 (pino 170). O circuito RC conectado ao pino 7 determina a constante de tempo do seu detector. O resistor R12 limita a corrente consumida pelos LEDs. Os critérios para a escolha do seu valor são: o brilho necessário dos LEDs, por um lado, e a corrente consumida da fonte de alimentação, por outro.

Os elementos R6, C6 e R11, C7 são filtros nos circuitos de potência dos nós correspondentes.

A possibilidade de utilização do microcircuito em frequências de até 100 kHz foi determinada experimentalmente. O valor mínimo certificado da tensão de alimentação do microcircuito é de 3,5 V, porém, testes de vários exemplares mostraram seu desempenho até uma tensão de 2,7 V; com uma diminuição adicional da tensão, os LEDs param de brilhar.

O dispositivo exibe o valor ESR controlado de acordo com o princípio: quanto menor a resistência, menor o número de LEDs acesos. Quando os contatos da chave SA1 estão fechados, o capacitor C2 também é conectado em paralelo com o capacitor C1. Neste caso, a frequência do gerador será reduzida para aproximadamente 1200 Hz, portanto o nível do sinal nos terminais do capacitor em teste dependerá principalmente de sua capacitância. Quanto maior a capacitância, menor será o número de LEDs acesos.

O dispositivo usa resistores e capacitores de chip, mas outros pequenos podem ser usados. Os capacitores C3-C5, C8, C10 são importados de cerâmica de pequeno porte. A sua capacidade não é crítica. Os LEDs VD2-VD6 são microconsumidores e brilham bastante mesmo com uma corrente de 0,5...1 mA. Você pode usar outros LEDs vermelhos que atendam aos requisitos especificados, por exemplo, KIPD-05A.

A chave SA1 é uma chave deslizante de pequeno porte, SB1 é uma chave de botão, sem travamento na posição pressionada. O transistor VT1 pode ser substituído por KT315, KT3102 (com qualquer índice de letras) com um coeficiente de transferência de corrente superior a 100. A fonte de alimentação da sonda são dois elementos alcalinos LR44 (357, G13) com tamanho padrão de 11,6x5,4 milímetros.

A frequência operacional do gerador é controlada pelo resistor R3. Deve estar entre 60...80 kHz. Se necessário, instala-se selecionando os elementos R2 ou C2. A tensão no coletor do transistor VT1 deve estar entre 1,0...1,7 V, é definida selecionando o resistor R8.

A sonda é calibrada conectando resistores não indutivos (sem fio) às sondas no modo de medição ESR e selecionando o resistor R3. A faixa necessária de controle de capacitância na posição fechada dos contatos da chave SA1 é estabelecida selecionando o capacitor C1, conectando capacitores com capacitância conhecida às pontas de prova.
O desenho da placa de circuito impresso não é fornecido devido ao design bastante simples do dispositivo e à inconveniência de vincular o design a um tipo específico de caixa.

A aparência da sonda é mostrada na fig. 2.

Sonda do Capacitor de Óxido

As sondas são feitas de fio de aço rígido com diâmetro de 1 mm, as pontas são levemente curvadas e pontiagudas. A distância entre as pontas de prova é de 4 mm, o que permite, levando em consideração o tamanho das placas de contato da placa de circuito impresso, testar capacitores com distância entre os fios de 2,5 a 7,5 mm. O aparente inconveniente associado à orientação do dispositivo em relação aos terminais do capacitor desaparece após alguns dias de uso.

Durante as medições, o produto testado deve ser desenergizado e os capacitores, que podem conter tensões perigosas, devem ser descarregados. As pontas de prova devem ser pressionadas contra as almofadas de contato da placa, às quais o capacitor sendo testado está soldado, e pressionar o botão liga / desliga. Devido a processos transitórios, todos os LEDs piscam brevemente, após o que a condição do capacitor pode ser avaliada pelo número de LEDs acesos. Assim, o tempo de ativação da sonda para testar um capacitor não excede 1 s. Para bons capacitores com capacidade de 10 µF e superiores para tensões operacionais de até 100 V, todos os LEDs devem apagar. Capacitores de menor capacidade e maior tensão operacional têm um ESR mais alto, portanto, 1-2 LEDs podem acender.

Os critérios para avaliar a adequação dos capacitores de óxido dependem das funções que desempenham nos componentes do dispositivo, dos modos elétricos e das condições de operação. Os componentes mais críticos: o circuito de controle do transistor chave em fontes de alimentação com conversão de alta frequência, filtros nessas fontes, inclusive aquelas alimentadas por transformador de varredura horizontal para televisores e monitores, filtro no circuito de alimentação para o “boost ”do transistor de varredura horizontal, etc. Quanto maior a frequência de operação e as correntes de recarga, melhor será a qualidade dos capacitores utilizados.

Nos circuitos acima, devem ser utilizados capacitores com faixa de temperatura de até 105°C, que apresentam ESR significativamente menor e maior confiabilidade em temperaturas elevadas. Se tais elementos não estiverem disponíveis, é aconselhável desviar os capacitores de óxido com capacitores cerâmicos com capacidade de 0,33-1 μF. Às vezes, esses capacitores são instalados pelo fabricante do dispositivo. Eles podem distorcer as leituras da sonda no modo de medição ESR (a capacitância de um capacitor de 1 μF a uma frequência de 80 kHz é de cerca de 2 ohms).

Acontece que capacitores defeituosos, após soldá-los na placa, podem ser identificados como utilizáveis ​​​​quando discados pelo dispositivo. Aparentemente, isso se deve à exposição a altas temperaturas durante a desmontagem. Não faz sentido instalar esses capacitores de volta no dispositivo - o defeito reaparecerá mais cedo ou mais tarde. Este é outro argumento a favor da verificação dos capacitores sem desmontá-los.

O dispositivo foi criado como um “burro de carga”, fácil de usar em quase todas as condições, sem frescuras e destinado não tanto a medições, mas a determinar de acordo com o princípio “go-no-go”. Portanto, em casos duvidosos e especialmente críticos, você deve verificar adicionalmente os capacitores usando os métodos disponíveis ou substituí-los por outros em boas condições.

A operação da sonda em uma oficina de TV por 6 meses mostrou a otimização de seus parâmetros metrológicos e do tipo de indicação selecionado. O desempenho do diagnóstico aumentou acentuadamente, especialmente em dispositivos que estão em uso há mais de 5 a 7 anos, e tornou-se possível diagnosticar precocemente defeitos associados à deterioração gradual dos capacitores de óxido. Não houve necessidade de troca das baterias da sonda nesse período.

A faixa de valores ESR monitorados da sonda pode ser expandida para resistências mais baixas, aumentando a corrente através do capacitor que está sendo testado. Para fazer isso, você precisa substituir o chip DD1 por um KR1554TLZ, que aumentará a corrente de saída do gerador reduzindo a resistência do resistor R3. Basta utilizar apenas um elemento do microcircuito no gerador, conectando sua saída à esquerda, conforme diagrama, saída do resistor R3. Conecte as entradas dos elementos não utilizados (pinos 4, 5, 9, 10, 12, 13) a um fio comum. A corrente consumida pelo dispositivo aumentará. Desta forma, você pode reduzir o limite inferior do controle ESR para 0,5...1 Ohm. Para cobrir a faixa recomendada de valores ESR, você terá que introduzir uma chave fim de curso usando dois resistores comutáveis ​​em vez de um resistor R3.

Você pode adicionar outra faixa de medição de capacitância usando a chave SA1 em três posições e adicionando outro capacitor semelhante a C1. Faixas recomendadas: 7...40 e 40...220 µF (frequência do oscilador - aproximadamente 2400 e 550 Hz).

No modo de medição de capacitância, um sinal de frequência de áudio está presente nas pontas de prova do dispositivo. Pode ser usado para testar emissores acústicos ou para verificar o fluxo de sinal em amplificadores 3H.

Literatura

  1. Omelyanenko A. Medidor ESR para capacitores eletrolíticos. - Reparação de equipamentos eletrônicos, 2002, nº 2, p. 37.
  2. Chulkov V. Dispositivo para verificação da ESR de capacitores eletrolíticos. - Reparação de equipamentos eletrônicos, 2002, nº 6, p. 32.

Autor: R. Khafizov, Sarapul, Udmúrtia

Veja outros artigos seção Tecnologia de medição.

Leia e escreva útil comentários sobre este artigo.

<< Voltar

Últimas notícias de ciência e tecnologia, nova eletrônica:

O ruído do trânsito atrasa o crescimento dos pintinhos 06.05.2024

Os sons que nos rodeiam nas cidades modernas estão a tornar-se cada vez mais penetrantes. No entanto, poucas pessoas pensam em como esse ruído afeta o mundo animal, especialmente criaturas delicadas como os filhotes que ainda não nasceram dos ovos. Pesquisas recentes estão lançando luz sobre esta questão, indicando sérias consequências para o seu desenvolvimento e sobrevivência. Os cientistas descobriram que a exposição de filhotes de zebra-diamante ao ruído do tráfego pode causar sérias perturbações ao seu desenvolvimento. Experimentos mostraram que a poluição sonora pode atrasar significativamente a eclosão, e os pintinhos que emergem enfrentam uma série de problemas que promovem a saúde. Os pesquisadores também descobriram que os efeitos negativos da poluição sonora se estendem às aves adultas. As probabilidades reduzidas de reprodução e a fertilidade reduzida indicam os efeitos a longo prazo que o ruído do tráfego tem sobre a vida selvagem. Os resultados do estudo destacam a necessidade ... >>

Alto-falante sem fio Samsung Music Frame HW-LS60D 06.05.2024

No mundo da tecnologia de áudio moderna, os fabricantes buscam não apenas uma qualidade de som impecável, mas também uma combinação de funcionalidade com estética. Um dos mais recentes passos inovadores nesta direção é o novo sistema de alto-falantes sem fio Samsung Music Frame HW-LS60D, apresentado no evento 2024 World of Samsung. O Samsung HW-LS60D é mais do que apenas um sistema de alto-falantes, é a arte do som estilo quadro. A combinação de um sistema de 6 alto-falantes com suporte Dolby Atmos e um design elegante de moldura fotográfica torna este produto o complemento perfeito para qualquer interior. O novo Samsung Music Frame apresenta tecnologias avançadas, incluindo Áudio Adaptativo, que oferece diálogos claros em qualquer nível de volume, e otimização automática da sala para uma reprodução de áudio rica. Com suporte para conexões Spotify, Tidal Hi-Fi e Bluetooth 5.2, bem como integração de assistente inteligente, este alto-falante está pronto para satisfazer seu ... >>

Uma nova maneira de controlar e manipular sinais ópticos 05.05.2024

O mundo moderno da ciência e da tecnologia está se desenvolvendo rapidamente e todos os dias surgem novos métodos e tecnologias que nos abrem novas perspectivas em vários campos. Uma dessas inovações é o desenvolvimento, por cientistas alemães, de uma nova forma de controlar sinais ópticos, que poderá levar a progressos significativos no campo da fotónica. Pesquisas recentes permitiram que cientistas alemães criassem uma placa de ondas sintonizável dentro de um guia de ondas de sílica fundida. Este método, baseado no uso de uma camada de cristal líquido, permite alterar efetivamente a polarização da luz que passa por um guia de ondas. Este avanço tecnológico abre novas perspectivas para o desenvolvimento de dispositivos fotônicos compactos e eficientes, capazes de processar grandes volumes de dados. O controle eletro-óptico da polarização fornecido pelo novo método poderia fornecer a base para uma nova classe de dispositivos fotônicos integrados. Isto abre grandes oportunidades para ... >>

Notícias aleatórias do Arquivo

Notebooks Samsung Galaxy Book3 Pro, 360 e Pro 360 28.01.2023

Samsung anunciou uma linha de laptops Galaxy Book3. As novidades são aparentemente semelhantes aos seus antecessores da geração Book2. As principais diferenças são os processadores Intel Core de 13ª geração e uma nova tela.

A tela, que a Samsung chama de Dynamic AMOLED 2X Display, já é utilizada nos smartphones Galaxy. A designação 2X indica uma taxa de atualização de 120 Hz. O painel recebeu uma resolução de 2880 x 1800 pixels e uma proporção de 16:10. A tela é maior do que as telas de formato 2:16 do Galaxy Book9. Os benefícios naturais do AMOLED são cores vibrantes, amplos ângulos de visão, tempos de resposta rápidos e pretos profundos.

Além disso, o laptop transformador Galaxy Book3 360 apareceu na loja oficial da Samsung, que não foi mencionado na apresentação de hoje e que foi descoberto pelo autor desta notícia. Seu principal diferencial é uma tela com resolução Full HD e diagonal de 13,3″ ou 15,6″, além de apenas dois alto-falantes para reprodução de som.

Os Galaxy Books anteriores foram considerados alguns dos melhores laptops ultraportáteis do mercado. São leves e, como seria de esperar dos aparelhos Samsung, possuem telas muito boas. Novas telas com resoluções mais altas e taxas de atualização mais rápidas contribuirão para uma melhor experiência de mídia.

Os notebooks vêm nas cores grafite e bege. O Samsung Galaxy Book3 Pro começará em $ 1449,99, o Book3 360 Pro começará em $ 1699,99 e o Book3 360 começará em $ 1299,99. Eles já estão disponíveis para pré-venda, as vendas diretas começarão no dia 17 de fevereiro.

Outras notícias interessantes:

▪ Analisador de espectro portátil B&K PRECISION Modelo 2650

▪ Comutadores de matriz Mindspeed de 12,5 Gbps

▪ Astronautas confirmam: sal é perigoso

▪ Drivers SiC MOSFET de dois canais isolados 2EDF0275F e 2EDS9265H

▪ Refrigerante estraga os olhos e o coração

Feed de notícias de ciência e tecnologia, nova eletrônica

 

Materiais interessantes da Biblioteca Técnica Gratuita:

▪ seção do site Histórias da vida de radioamadores. Seleção de artigos

▪ Artigo de Morfeu. expressão popular

▪ artigo Você consegue ver um arco-íris à noite? Resposta detalhada

▪ artigo Despachante-mecânico. Descrição do trabalho

▪ artigo janeiro-4. Sensor de posição do acelerador. Enciclopédia de rádio eletrônica e engenharia elétrica

▪ artigo Normas para testes de equipamentos e dispositivos elétricos para instalações elétricas de consumidores. O número de operações ao testar contatores e máquinas automáticas ligando e desligando repetidamente. Enciclopédia de rádio eletrônica e engenharia elétrica

Deixe seu comentário neste artigo:

Имя:


E-mail opcional):


Comentário:





Todos os idiomas desta página

Página principal | Biblioteca | Artigos | Mapa do Site | Revisões do site

www.diagrama.com.ua

www.diagrama.com.ua
2000-2024